- 表紙
- まとめ
数学のまとめ
「三角関数の加法定理」とは
三角関数の変数(角度)の和や差での値の違いを表す公式のこと。
A. 三角関数の加法定理
- $\displaystyle \sin (\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha) \sin(\beta)$
- $\displaystyle \cos (\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha) \sin(\beta)$
- $\displaystyle \tan (\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$
B. 倍角の公式
- $\displaystyle \sin (2x) = 2 \sin (x) \cos(x)$
- $\displaystyle \cos (2x) = \cos^2(x)-\sin^2(x)$ $=1-2\sin^2 (x)$ $=2\cos^2(x)-1$
- $\displaystyle \tan (2x) = \frac{2 \tan(x)}{1-\tan^2(x)}$
C. 半角の公式
- $\displaystyle \sin^2\left( \frac{x}{2} \right) = \frac{1-\cos(x)}{2}$
- $\displaystyle \cos^2 \left(\frac{x}{2} \right) = \frac{1+ \cos(x)}{2}$
- $\displaystyle \tan^2 \left(\frac{x}{2} \right) = \frac{1-\cos(x)}{1+\cos(x)}$
ポイント解説
A
次図の $\mathrm{AB}$ を距離の公式と余弦定理の2通りで求めれば加法定理が導ける.
積和・和積の公式
- $\sin \alpha \cos \beta$ $=\frac{1}{2} \{ \sin(\alpha + \beta) + \sin (\alpha - \beta) \}$
- $\cos \alpha \sin \beta$ $=\frac{1}{2} \{ \sin(\alpha + \beta) - \sin (\alpha - \beta) \}$
- $\cos \alpha \cos \beta$ $=\frac{1}{2} \{ \cos(\alpha + \beta) + \cos (\alpha - \beta) \}$
- $\sin \alpha \sin \beta$ $=-\frac{1}{2} \{ \cos(\alpha + \beta) - \cos (\alpha - \beta) \}$
- $\sin A + \sin B$ $\displaystyle =2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
- $\sin A - \sin B$ $\displaystyle =2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$
- $\cos A + \cos B$ $\displaystyle =2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
- $\cos A - \cos B$ $\displaystyle =-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$
三角関数の具体例
さまざまな公式
三角関数の周期性($+2\pi$)
- $\sin(x+2\pi) = \sin(x)$
- $\cos(x+2\pi) =\cos(x)$
- $\tan(x+2\pi) = \tan(x)$
三角関数の周期性($+\pi$)
- $\sin(x+\pi) = -\sin( x)$,
- $\cos(x+\pi) = - \cos(x)$
- $\tan(x+\pi) = \tan(x)$
三角関数の対称性(偶奇)
- $\sin(-x) = - \sin(x)$
- $\cos(-x) = \cos(x)$
- $\tan(-x) = - \tan(x)$
三角関数の対称性($90^{\circ}$の対称性)
- $\sin(\pi - x) = -\sin( x)$,
- $\cos(\pi - x) = - \cos(x)$
- $\tan(\pi - x) = \tan(x)$
三角関数の対称性($45^{\circ}$の対称性)
- $\sin(\frac{\pi}{2} - x) = \cos( x)$,
- $\cos(\frac{\pi}{2} - x) = \sin(x)$
- $\tan(\frac{\pi}{2} - x) = \frac{1}{\tan(x)}$
三角関数の加法定理
- $\displaystyle \sin (\alpha+\beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha) \sin(\beta)$
- $\displaystyle \sin (\alpha-\beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha) \sin(\beta)$
- $\displaystyle \cos (\alpha+\beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha) \sin(\beta)$
- $\displaystyle \cos (\alpha-\beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha) \sin(\beta)$
- $\displaystyle \tan (\alpha+\beta) = \frac{\tan(\alpha)+\tan(\beta)}{1 - \tan(\alpha) \tan(\beta)}$
- $\displaystyle \tan (\alpha-\beta) = \frac{\tan(\alpha)-\tan(\beta)}{1 + \tan(\alpha) \tan(\beta)}$
2倍角の公式
- $\displaystyle \sin (2x) = 2 \sin (x) \cos(x)$
- $\displaystyle \cos (2x) = \cos^2(x)-\sin^2(x)$ $=1-2\sin^2 (x)$ $=2\cos^2(x)-1$
- $\displaystyle \tan (2x) = \frac{2 \tan(x)}{1-\tan^2(x)}$
半角の公式
- $\displaystyle \sin^2\left( \frac{x}{2} \right) = \frac{1-\cos(x)}{2}$
- $\displaystyle \cos^2 \left(\frac{x}{2} \right) = \frac{1+ \cos(x)}{2}$
- $\displaystyle \tan^2 \left(\frac{x}{2} \right) = \frac{1-\cos(x)}{1+\cos(x)}$
3倍角の公式
- $\displaystyle \sin (3x) = 3 \sin (x) - 4 \sin^3(x)$
- $\displaystyle \cos (3x) = 4\cos^3(x)-3\cos(x)$
- $\displaystyle \tan (3x) =3 \tan (x) - \frac{3 \tan(x)}{1-\tan^2(x)}$
積和の公式
- $\sin \alpha \cos \beta$ $\displaystyle =\frac{1}{2} \{ \sin(\alpha + \beta) + \sin (\alpha - \beta) \}$
- $\cos \alpha \sin \beta$ $\displaystyle =\frac{1}{2} \{ \sin(\alpha + \beta) - \sin (\alpha - \beta) \}$
- $\cos \alpha \cos \beta$ $\displaystyle =\frac{1}{2} \{ \cos(\alpha + \beta) + \cos (\alpha - \beta) \}$
- $\sin \alpha \sin \beta$ $\displaystyle =-\frac{1}{2} \{ \cos(\alpha + \beta) - \cos (\alpha - \beta) \}$
和積の公式
- $\sin A + \sin B$ $\displaystyle =2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$
- $\sin A - \sin B$ $\displaystyle =2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$
- $\cos A + \cos B$ $\displaystyle =2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
- $\cos A - \cos B$ $\displaystyle =-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$