- 表紙
- まとめ
- 具体例
「三角比」とは
角度を三角形の辺の長さの比を使って表現した値のこと。
鋭角の三角比の定義
$C = 90^{\circ}$ の直角三角形 $\mathrm{ABC}$ において, $A=\theta$ ならば, 正弦
$\displaystyle \sin \theta = \frac{a}{c}$
, 余弦
$\displaystyle \cos \theta = \frac{b}{c}$
, 正接
$\displaystyle \tan \theta = \frac{a}{b}$
を定める.
B. 三角比の相互関係
① $\sin^2 \theta + \cos^2 \theta = 1$
② $\displaystyle \tan \theta = \frac{\sin \theta}{\cos \theta}$
③ $\displaystyle 1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$
三角比の拡張
$xy$ 平面の単位円上の点 $\mathrm{P}$ が $\angle \mathrm{POX} = \theta$ であるとき, $0^{\circ} \leqq \theta \leqq 180^{\circ}$ の三角比は,
$\sin \theta = y$
,
$\cos \theta= x$
,
$\tan \theta = y/x$
で定義される. なお, $\mathrm{O}(0,0)$, $\mathrm{X}(1,0)$ とする.
C. 余角と補角に関する三角比の関係
① $\sin (90^{\circ} - \theta) = \cos \theta$
② $\cos (90^{\circ} - \theta) = \sin \theta$
③ $\displaystyle \tan (90^{\circ} - \theta) = \frac{1}{\tan \theta}$
❶ $\sin (180^{\circ} - \theta) = \sin \theta$
❷ $\cos (180^{\circ} - \theta) = -\cos \theta$
❸ $\displaystyle \tan (180^{\circ} - \theta) =- \tan \theta$
ポイント解説
定義
直角三角形の図は次の通り:
例
三角定規の直角三角形
$\theta$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ |
$\sin \theta$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ |
$\cos \theta$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ |
$\tan \theta$ | $\frac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ |
拡張
図は次の通り:
他の三角比
上の三角比の逆数に対応:
- 余割: $\csc \theta =c/a$
- 正割: $\sec \theta = c/b$
- 余接: $\cot \theta = a/b$
具体例
有名角
$\theta$ | $0^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $135^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ |
$\sin \theta$ | $0$ | $\displaystyle \frac{1}{2}$ | $\displaystyle \frac{\sqrt{2}}{2}$ | $\displaystyle \frac{\sqrt{3}}{2}$ | $1$ | $\displaystyle \frac{\sqrt{3}}{2}$ | $\displaystyle \frac{\sqrt{2}}{2}$ | $\displaystyle \frac{1}{2}$ | $0$ |
$\cos \theta$ | $1$ | $\displaystyle \frac{\sqrt{3}}{2}$ | $\displaystyle \frac{\sqrt{2}}{2}$ | $\displaystyle \frac{1}{2}$ | $0$ | $\displaystyle -\frac{1}{2}$ | $\displaystyle -\frac{\sqrt{2}}{2}$ | $\displaystyle -\frac{\sqrt{3}}{2}$ | $-1$ |
$\tan \theta$ | $0$ | $\displaystyle \frac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ | × | $-\sqrt{3}$ | $-1$ | $\displaystyle \frac{1}{\sqrt{3}}$ | $0$ |
$\theta = 15^{\circ}$
$\displaystyle \sin 15^{\circ} = \frac{\sqrt{6}-\sqrt{2}}{4}$
$\displaystyle \cos 15^{\circ} = \frac{\sqrt{6}+\sqrt{2}}{4}$
$\displaystyle \tan 15^{\circ} = 2-\sqrt{3}$
$\theta = 18^{\circ}$
$\displaystyle \sin 18^{\circ} = \frac{\sqrt{5}-1}{4}$
$\displaystyle \cos 18^{\circ} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$
$\displaystyle \tan 18^{\circ} = \frac{1}{\sqrt{5+2\sqrt{5}}}$
$\theta = 36^{\circ}$
$\displaystyle \sin 36^{\circ} = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$
$\displaystyle \cos 36^{\circ} = \frac{\sqrt{5}+1}{4}$
$\displaystyle \tan 36^{\circ} = \sqrt{5-2\sqrt{5}}$
$\theta = 54^{\circ}$
$\displaystyle \sin 54^{\circ} = \frac{\sqrt{5}+1}{4}$
$\displaystyle \cos 54^{\circ} = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$
$\displaystyle \tan 54^{\circ} = \frac{\sqrt{25+10\sqrt{5}}}{5}$
$\theta = 72^{\circ}$
$\displaystyle \sin 72^{\circ} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$
$\displaystyle \cos 72^{\circ} = \frac{\sqrt{5}-1}{4}$
$\displaystyle \tan 72^{\circ} = \sqrt{5+2\sqrt{5}}$
$\theta = 75^{\circ}$
$\displaystyle \sin 75^{\circ} = \frac{\sqrt{6}+\sqrt{2}}{4}$
$\displaystyle \cos 75^{\circ} = \frac{\sqrt{6}-\sqrt{2}}{4}$
$\displaystyle \tan 75^{\circ} = 2+\sqrt{3}$