• まとめ

「フィボナッチ数列」とは

$1, \ 1, \ 2, \ 3, \ 5, \ 8, \ 13, \ 21, \ 34, \ \cdots$ のこと。

定義(漸化式)

前の2つの数の和が次の数になる数列である.

$$a_{n+2} = a_{n+1} + a_n$$

A. 一般項

$\displaystyle a_n = \frac{1}{\sqrt{5}} \left\{ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{1-\sqrt{5}}{2} \right)^n \right\}$

B. 性質

$\displaystyle \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ $\displaystyle = \frac{1+\sqrt{5}}{2}$

C. 自然現象

(1)うさぎ🐇のつがい数[外部リンク](2)ひまわりの種・松ぼっくりの鱗(3)フィボナッチリトレースメント(株価)[外部リンク](4)階段の登り方

ポイント解説

A

$\phi = \frac{1+\sqrt{5}}{2}$ とします。

漸化式(定義)は次の2式に変形できます。

$$\left\{ \begin{array}{lll}
a_{n+2} - \phi a_{n+1} &=& \frac{1}{\phi}(a_{n+1} - \phi a_n) \\
a_{n+2} - \frac{1}{\phi} a_{n+1}&=& \phi(a_{n+1} - \frac{1}{\phi} a_n)
\end{array} \right. $$

数列 $\{ a_{n+1} - \phi a_n \}_n$ と $\{ a_{n+1} - \frac{1}{\phi} a_n \}_n$ が等比数列と分かるから,

$$\left\{ \begin{array}{lll}
a_{n+1} - \phi a_n &=& \frac{1}{\phi^n}\\
a_{n+1} - \frac{1}{\phi} a_n &=& \phi^n
\end{array} \right. $$

この2式を整理して,

$$a_n = \frac{1}{\sqrt{5}} \left( \phi^n - \frac{1}{\phi^n} \right).$$

B

フィボナッチ数列の隣り合う項の比は黄金比になってます。

C

(1)フィボナッチのうさぎ (2)対数螺旋 (4)階段を1段か2段で登る時の登り方の総数

★各詳細は今後書いていきます。

うさぎのつがいは産まれて2ヶ月後から、つがいのうさぎを毎月産むとします。産まれたばかりのつがいのうさぎから、1年後には数はいくらになってますか。

コメントをどうぞ